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1 Introduction

Background: The FGIC task requires distinguish-
ing classes with subtle discriminatory features. Its
applications span numerous domains including con-
servation [1], healthcare [2], and retail stores [3]. Our
application is feather to species mapping which is use-
ful for identifying birds prone to aircraft collisons [4].

Related Work: Approaches not explored in this
paper include Recursive Attention CNNs (RA-CNNs)
and part based image representation. The former re-
cursively make predictions and pass forward smaller
croppings of the input to attend to specific regions [5].
The latter seeks to segment high level features shared
amongst classes to generate a representation for clas-
sification [6]. Specific loss functions have also been
developed to discourage prediction over-confidence
and enhance generalizability [7].

2 Methods

Dataset: The dataset consists of 9562 train, 2391
validation, and 2988 test images of feathers [4]. As-
sociated with each image are two hierarchical labels,
denoting order (16 classes) and species (100 classes).
The latter is the classification goal. Images are re-
shaped to size 64x64 to reduce the required compute.

Setup, Training and Evaluation: The data
pipeline was adapted from the dataset’s creator’s
work [8]. FGIC data augmentation is difficult as even

subtle changes may not be label preserving due to low
inter-class variability. Thus, simple image flips and
small color jitters to mimic different lighting condi-
tions are used. Class sizes are heavily skewed, rang-
ing from 383 to 43 images in the training set. To
promote generalizability class-weighted cross entropy
loss is used to more heavily penalize misclassifications
of images belonging to underrepresented classes.

A VGG-16 model is used as a baseline. Modi-
fied VGG-16 models which used self-attention mod-
ules to either replace or be included in addition to
the 4th, 6th, and 8th convolutional layers were imple-
mented using the following sources as a guide [9], [10].
The self-attention module was originally designed for
GANs, though we show it provides marginal improve-
ments in FGIC. The module allows the CNN to con-
sider pairwise interactions across the entire image
through a covariance matrix β ∈ RN×N , where N
is the product of the input feature map’s width and
height. In this way self-attention increases receptive
field. Note the use of a skip-ahead connection to im-
prove gradient flow.

Figure 1: Attention Module; Fig. Adapted From [9]
A Bilinear CNN (BCNN) model which combines

feature maps of two parallel VGG-16 models trun-
cated at the 7th convolutional layer via outer prod-
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uct was implemented using the following sources as
a guide [11],[12],[13]. Notably, the outer product re-
sults in a matrix M ∈ RC×C where C is the number
of channels. M is a channel-wise covariance matrix
that considers second-order feature interactions but
lacks any spatial information, making it orderless. A
1× 1 convolutional reduction layer is used to reduce
the classifier’s width.

Figure 2: BCNN; Fig. Adapted From [11]
We designed a custom amendment to the BCNN

to leverage hierarchical labeling. By appending clas-
sifiers, Stream A is trained to predict orders and
Stream B to predict species. The streams’ final fea-
ture maps are combined via outer product and used
to make the final species prediction. Thus, we have
three loss functions whose average is used as the com-
putational graph’s head for backpropagation. The in-
tuition is to contextualize the feature maps by consid-
ering the species’ order in the predictive input. Note
the streams are now full VGG16 feature extractors.

Figure 3: Custom BCNN; Fig. Adapted From [11]

Models are trained with 32 batch size and Adam
optimizer. Early stopping is applied for regular-
ization and to lessen the required compute. When
the validation loss fails to decrease in 12 consecutive
epochs the model yielding the lowest validation loss is
saved. Kaiming initialization and 10−5 learning rate
is used for all models except #4 which uses PyTorch
default initialization and 2.5 · 10−5 learning rate.

3 Results

Model Top-1 Accuracy Top-5 Accuracy

#1 VGG16 86.08 97.76
#2 VGG16, AS 87.58 98.26
#3 VGG16, AA 87.42 98.05
#4 BCNN 91.27 98.93
#5 Custom BCNN 87.62 96.45

AS: Attention Substituted, AA: Attention Added

4 Discussion

VGG16 performs well, likely due to the bias of
CNNs towards the local texture regularities rather
than shape [14] which are more useful in FGIC.

Both the self-attention module and BCNN con-
sider second-order pairwise interactions. However,
the BCNN’s interactions are between channels and
thus orderless. Both the BCNN and attention mod-
ules best the VGG16, demonstrating that both forms
of second-order information are useful for FGIC.
However, the BCNN’s superior performance suggests
space-aware interactions are of lesser utility. The
intuition is similar to that employed in part-based
learning[6]; feature content rather than feature loca-
tion is more useful when relative position is uninfor-
mative, as is often the case in FGIC. The caveat being
that BCNN requires significantly more parameters.

#5’s underperformance relative to #4 is poten-
tially due to the lack of an informative 3-way relation-
ship between order, species, and feather appearance.
Moreover, the large number of parameters (over dou-
ble VGG16) and 3 losses likely produce a complicated
loss surface with many saddle points which requires
techniques such as learning rate decay to navigate.
For the same reason 12 consecutive epochs of non-
decreasing val loss may be insufficient to determine
convergence causing training to halt prematurely.

A more difficult dataset may have made the mod-
els’ relative performance more pronounced. More
compute would have allowed longer training times,
additional configuration testing, and more robust re-
sults. Being careful to only evaluate on the test set
once per model would have reduced the potential for
test set overfitting.
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